

# NASA Perspective on Radiation Hardness Assurance (RHA) for Hybrid Devices<sup>†</sup>

James W. Howard Jr.

Jackson and Tull Chartered Engineers Washington, D.C. Kenneth A. LaBel

NASA/GSFC Code 561 Greenbelt, Maryland

† Work partially supported through the NASA Electronic Parts and Packaging Program

#### **GSFC Contributors**

- Steve Buchner
- Mike Jones
- Hak Kim
- Scott Kniffin
- Ray Ladbury
- Cheryl Marshall
- Paul Marshall
- Tim Oldham
- Christian Poivey
- Robert Reed
- Mike Xapsos

### **Outline**

- Introduction/Problem Statement
- RHA Issues
- Hybrid RHA at NASA
- Test Issues
- Data Analysis Issues
- COTS
- Summary

#### Problem Statement

- To understand the radiation hardness level of a hybrid device that typically consists of many technologies, detailed testing and analysis is required.
- The current budgetary conditions of most NASA flight projects is in direct conflict with these requirements.

## Sample RHA Issues

- Cost and Procurement Lead Time
- Traceability
- Everything can possibly go wrong
  - CMOS low dose rate, ELDRS, Displacement
     Damage, SEL, SEB, SEGR, SEU, SET, SEFI, etc.
- Worst Case vs. Application Specific

# Hybrid RHA at NASA

- Working with the Vendor
  - Information
  - Cooperative investigations
  - Design modifications
- Testing
- Analysis
  - Piece-part Analysis
  - Test Data Analysis
  - System Level Impact Analysis

# Cooperative Investigation with Micropac



# Cooperative Investigation with Micropac



# Space Station (ISS) DC/DC Converters

- High Voltage DC/DC converters from Modular Devices, Inc.
   (MDI) were tested to examine the possibility of their use on ISS.
   A mixture of devices with 120 volt inputs and single or dual 5, 12, or 15 volt outputs were used.
- Initial testing showed a low LET threshold for destructive burnout of the power MOSFET (see photo below).
- MDI cooperated in this effort by replacing the "very good" power MOSFET used in the original design with a RADHARD equivalent.
- Follow-on tests of these new devices showed a higher LET threshold for failure but not considered RADHARD.
- Could indicate a circuit-induced failure mode that is not solved by RADHARD part selection.



# Space Station DC/DC Converter Results Summary

|  | Part Number      | Volts                         | Load                     | LET                  | Pass/Fail                    |
|--|------------------|-------------------------------|--------------------------|----------------------|------------------------------|
|  | MDI3051RES05ZF   | 126<br>113                    | 10%<br>50%               | 12<br>12             | Pass<br>Fail                 |
|  | MDI3051RES12ZF   | 120<br>126                    | 25 -100%<br>25 -100%     | 12<br>12             | Pass<br>Pass                 |
|  |                  | 120<br>120<br>120             | 25 -75%<br>100%          | 28<br>28             | Pass<br>Fail                 |
|  | MDI3051RES15ZF   | 120<br>120                    | 25 -100%<br>75%          | 28<br>28             | Pass<br>Fail                 |
|  | MDI3051RES05ZF_A | 126<br>126<br>126             | 50%<br>50%<br>75%        | 28<br>37<br>37       | Pass<br>Pass<br>Fail         |
|  | MDI3051RED12ZF_A | 120, 126<br>120<br>120<br>120 | 75%<br>75%<br>25%<br>75% | 28<br>37<br>60<br>60 | Pass<br>Pass<br>Pass<br>Fail |
|  | MDI3051RED15ZF_A | 120, 126<br>120<br>120        | 75%<br>25%<br>75%        | 37<br>60<br>60       | Pass<br>Pass<br>Fail         |

Parts with RadHard | MOSFET

# Testing Issues

- Cost and Procurement Lead Time
  - Extremely Small Sample Size
  - Can lead to "late in the game" testing
- Everything can possibly go wrong
  - With the small sample size, testing has to be prioritized/combined
- Worst Case vs. Application Specific
  - With small sample size, testing is generally done application specific
  - Multiple applications within a project may force more generic testing
    - Can worst case conditions really be determined
    - Test parameter space can be extremely large for generic testing
- High Voltages and Currents
  - Care in testing due to destructive events and constrained sample size
  - Cooling of test structures often required which can be problematic when working in a vacuum
- Multiple devices exposed simultaneously
  - Don't know which device may be the problem
  - May have some multiple event interactions
- Packaging can restrict device access

# Data Analysis Issues

- Piece-part Analysis
  - If complete parts list and radiation data available, can treat as any other system analysis
  - Main issues are:
    - Rarely are both items available
    - The "system" designer is usually not available
- Test Data Analysis
  - Must go from test data to in-flight predictions
    - Multiple data sets
    - Multiple space environments
- System Level Impact Analysis
  - In-flight predictions for hybrid are then analyzed for systemlevel impact, mitigation options and risk assessment
  - Trades between mitigation, risk assessment and risk acceptance are at the system and project manager levels

## Optocoupler Flight Predictions



Taken from Reed, et al., "Guideline for Optocoupler Ground Radiation Testing and Optocoupler Usage in the Space Radiation Environment"

# Commercial-Off-The-Shelf (COTS) Issues

- COTS Hybrids
  - Traceability is the real issue
  - Part-to-part variability can be significant
    - COTS parts are used
    - Various vendor parts may be used in same location
    - In general, no such thing as lot control
- COTS Printed Circuit Boards as "Hybrids"
  - COTS PCB can be treated as a hybrid on a larger scale
  - All the same issues apply as noted above
  - Often the PCB is integral to larger system and the observed effects can only be seen at that level
  - Heavy ion testing is often impossible

# Summary

- There are numerous issues when dealing with hybrid devices
- NASA takes a system-level-down approach to RHA
- It cannot be overstated how critical radiation testing, how the devices are tested, to good RHA
- NASA also works to make the vendor an integral part of the RHA process, as much as the vendor is willing to participate
- Test data analysis to flight risk assessments can be a very complex business, especially when dealing with many applications within a flight project
- COTS is COTS